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Control of Flexible Spacecraft with Time-Varying
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This paper is concerned with the dynamics and control of systems with time-varying configuration, such as
maneuvering articulated flexible spacecraft. The mathematical model consists of a rigid platform and a given
number of retargeting flexible antennas. The mission consists of maneuvering the antennas so as to coincide with
preselected lines of sight while stabilizing the platform in an inertial space and suppressing the elastic vibration
of the antennas. A perturbation technique permits the derivation of a new control law for systems with
time-varying configuration, in which the time-varying terms are relatively small. According to the proposed
perturbation method, the control gains consist of zero-order time-invariant gains obtained from the solution of
a matrix algebraic Riccati equation, which are valid both during and after the maneuver, and higher-order
time-varying gains obtained from the solution of matrix differential Lyapunov equations, which are valid only
during the maneuver. The approach is illustrated by means of a numerical example.

Introduction

T HE interest lies in the maneuvering of articulated flexible
spacecraft (Fig. 1). In particular, the maneuver involves

the reorientation relative to an inertial space of a line of sight
embedded in a flexible component of the spacecraft, such as a
flexible antenna. To this end, it is convenient to adopt a
strategy in which the main body of the spacecraft, regarded as
a rigid platform, is stabilized relative to the inertial space and
the flexible component is maneuvered relative to the platform
so as to cause the line of sight to coincide with the desired
direction in space. Note that such a maneuvering spacecraft is
characterized by the fact that its configuration varies with
time.

The control task can be designed by first designing the
maneuvering of the antenna as if it were rigid. Of course, in
actuality, the antenna is not rigid, so that the maneuver is
likely to cause elastic vibration, which in turn will induce
perturbations in the motion of the whole spacecraft. Hence, in
addition to the rigid-body maneuvering, the control task
amounts to simultaneous stabilization of the rigid platform
relative to an inertial space and suppression of the elastic
vibration caused by the maneuvering.

The rigid-body maneuvering of the antenna can be carried
out open loop. In the case of a minimum-time maneuver, the
control law is bang-bang. On the other hand, the control of
the elastic vibration and of the perturbations about the rigid-
body maneuver caused by the elastic vibration is carried out
closed loop. Note that the motion defining the open-loop
rigid-body maneuver can be regarded as a known function of
time. As a result, the state equations for feedback control are
characterized by time-varying coefficients and persistent dis-
turbances, both arising from the known rigid-body maneuver.

The problem just described has been treated previously1

under the assumption that the maneuver is slow, which implies
that the time-varying terms in the coefficients are relatively
small. The controller used in Ref. 1 consists of a disturbance-
accommodating control designed to counteract the effect of
the persistent disturbances and constant-gains feedback con-
trols designed on the basis of the premaneuver configuration.
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Bang-bang control implies that the maneuver angular acceler-
ation is constant over the first half of the maneuver, reverses
sign at one half of the maneuver period, and continues at the
same level over the second half of the maneuver. Propor-
tional-plus-integral (PI) control proved to be effective in the
case of constant disturbances.2'3 This approach was used in
Ref. 4 to control the vibration and the rigid-body perturba-
tions in a spacecraft with two flexible antenna undergoing
simultaneous maneuvering. Under the same assumption as in
Ref. 1 that the time-varying part in the coefficients is small,
the control design was based in Ref. 4 on the constant part,
which implies the use of constant gains.

This paper presents a different approach to the problem
than in Refs. 1 and 4. The approach amounts to assuming that
the control gains consist of a large constant part and a small
time-varying part. This permits the use of a perturbation
approach, whereby the solution of the matrix Riccati equation
is divided into a zero-order (in the perturbation sense) problem
requiring the solution of a matrix differential Riccati equation
for the constant part of the Riccati matrix and higher-order
problems amounting to the solution of matrix differential
Lyapunov equations for the time-varying part.

Another approach to the control of time-varying systems is
referred to as an adiabatic approximation.5 Implicit in the
adiabatic approximation is not only that the time-varying part
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Fig. 1 Articulated flexible spacecraft.
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Fig. 2 Flexible spacecraft in planar motion.

in the Riccati matrix is small but also that the time variation is
slow.

The developments presented here are illustrated by means of
an example involving the planar motion of a spacecraft con-
sisting of a rigid platform and a maneuvering flexible ap-
pendage (Fig. 2).

Equations of Motion
In this section, the equations of motion for a spacecraft

with retargeting flexible antennas are presented. The space-
craft is assumed to consist of a rigid body and several flexible
antennas, where the flexible appendages are regarded as dis-
tributed parameter members.

The equations describing the rigid-body motions of the
spacecraft are nonlinear ordinary differential equations. On
the other hand, the equations describing the small elastic
displacements of a flexible appendage relative to a frame
embedded in the undeformed appendage are partial differen-
tial equations. Hence, the complete equations describing a
spacecraft during reorientation represent a set of nonlinear
hybrid differential equations.

In general, hybrid systems of equations do not permit
closed-form solution, so that one must consider an approxi-
mate solution, which implies spatial discretization and trunca-
tion. Spatial discretization and truncation can be carried out
by representing the motion as a finite set of admissible func-
tions multiplied by time-dependent generalized coordinates.
Moreover, the equations can be first linearized and then recast
in compact state form. The state equations contain time-vary-
ing coefficients and persistent disturbances.

Let us consider the motion of a system consisting of a main
rigid body and several flexible appendages hinged to the main
body (Fig. 1). The equations of motion for a system of the
type shown in Fig. 1 were derived from Ref. 1 and, for brevity,
will not be repeated here in full. For small rigid-body and
elastic motions, the equations can be reduced to the form

[M0 + Af,(/)]* + G,(t)x + [*0 + K,(t)]x = f ( t ) + d(t) (1)

where jc = [RT BT qJ]T is the configuration vector in which R
represents the translational displacement vector of the plat-
form body axes, 6 represents the angular displacement vector
of the same body axes, and qe is a vector of generalized
coordinates corresponding to the elastic displacements of a
typical flexible appendage e. Moreover, M0 and KQ are, re-
spectively, symmetric mass and stiffness matrices correspond-
ing to the spacecraft in the premaneuver configuration, and
M!(/), Gi(0> and K\(t) are time-vary ing matrices depending
on the prescribed angular displacement, velocity, and acceler-
ation, respectively, of the flexible appendage relative to the
platform. Finally, f ( t ) and d(t) denote control and distur-
bance force vectors, respectively, where the latter represents
inertial forces due to the maneuver.

The equations of motion can be simplified to some extent by
expanding the configuration vector in a series of eigenvectors
corresponding to the premaneuver spacecraft. To this end, we
consider the eigenvalue problem

KOU = (2)

where A0 = diag(X/) is the matrix of eigenvalues and (7 = [i/j,
#2, • • • , un] is the matrix of eigenvectors. Because KQ and M0
are symmetric, the eigenvectors are orthogonal with respect to
both MO and K0. Moreover, M0 is positive definite and KQ is
positive semidefinite, so that the eigenvalues are non-negative.
The eigenvectors can be normalized so that the matrix U
satisfies

UTM0U = I

UTK0U = A0

(3a)

(3b)

where I is the identity matrix. Then, introducing the linear
transformation

x = Uij (4)

into Eq. (1), multiplying on the left by UT and considering
Eqs. (3), we obtain

M !» + Gtf + (A0

where

F = UTf

D = UTd

Equation (5) is said to be in pseudomodal form.

(5)

(6a)

(6b)

(6c)

(6d)

(6e)

Maneuvering and Disturbances
The maneuver under consideration consists of retargeting

the antennas so as to point in given directions in the inertial
space. By stabilizing the platform in an inertial space, the task
reduces to reorienting the antennas relative to the platform.
For a minimum-time maneuver, the control law is bang-bang,
which implies that the angular acceleration of an antenna
relative to the platform is constant, with the sign changing at
half the maneuver period. Ideally, the maneuver should not
cause elastic deformations in the flexible appendages, which is
not possible in theory. Hence, elastic deformations are likely
to occur, which in turn implies perturbations of the platform
from a fixed position in the inertial space. To suppress the
elastic vibration and the perturbation of the platform, we
propose to use feedback control.

The system governed by Eq. (1), or Eq. (5), is characterized
by two factors that distinguish it from most commonly en-
countered systems: it is time varying and it is subjected to
persistent disturbances. Both factors arise from the retargeting
maneuver angular velocities <oe, angular acceleration <i>e, and
the matrices Ee of direction cosines between axes x^y^,e and
axes xyz (e - 1, 2, . . . , TV), all quantities being prescribed
functions of time.

The persistent disturbances considered here take place dur-
ing the maneuver and arise from known sources. Indeed, these
disturbances arise from the inertial loading due to the motion
of the flexible appendages, and they depend on the policy of
reorientation of the flexible appendages. Disturbances tend to
have undesirable effects on the pointing accuracy of space-
craft. As a result, it is necessary to design counteracting con-
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trols to mitigate any adverse effects. Moreover, discretization
and truncation of the distributed-parameter system result in
reduced-order realization for the disturbances. Hence, the a
priori information concerning d(t) is usually not sufficiently
complete to permit accurate description of the nature of the
disturbances, so that we are faced with the problem of design-
ing disturbance-accommodating control with only an incom-
plete knowledge of these disturbances.

In this paper, we consider first a disturbance-minimizing
control. To cope with incompletely known disturbances, PI
control is explored. Using a perturbation method, the PI
control is extended to the problem of optimal control for
systems with time-varying coefficients, where the time-varying
part is of one order of magnitude smaller than the constant
part.

Perturbation Approach
We are concerned here with the case in which the time-vary-

ing part of the coefficients in Eq. (5) is of one order of
magnitude smaller than the constant part. In this case, we can
use a perturbation approach to compute the control gains. To
this end, we rewrite Eq. (5) in the state form

it/) = [A0 + /MOlttO + [£o + ̂ i(01[^(0 + D(t)] (7)

where f = for rfY is the pseudomodal state vector and

(8a)

(8b)

(8c)

(8d)

are coefficient matrices, in which quantities with the subscript
1 are of one order of magnitude smaller than quantities with
the subscript 0.

Introducing the notation

g=F + D (9)

and assuming that the disturbance vector D is constant during
the control interval, we can write

g = F (10)

The assumption that D is constant requires some explanation.
The disturbance vector D depends on the maneuver angular
acceleration, the maneuver angular velocity squared, and
trigonometric functions of the maneuver angle. Of these, in
the case of beam-like appendages, the angular acceleration
affects the elastic vibration and all three affect the rigid-body
motions. In the case of a bang-bang control law for the
maneuver, the angular acceleration is constant over each half
of the maneuver. Hence, as far as the elastic vibration is
concerned, the assumption of constant disturbance is largely
justified. On the other hand, the inertia of the appendages
tends to be small compared to the inertia of the rigid platform.
Because the disturbance terms involve the inertia of the ap-
pendages, the effect on the rigid-body motions is likely to be
very small. Hence, treating D as constant can be justified, at
least in the case of beam-like structures. This is true in partic-
ular when the maneuver is not very rapid. In the case of rapid
maneuvers, this assumption must be re-examined. It should be
stressed that the assumption is merely for control design, and
the time-varying terms in the disturbance are included in the
simulation of the closed-loop response.

Inserting Eq. (9) into Eq. (7) and combining with Eq. (10),
we obtain the new state equation

in which w = [£T gT]T is an extended state vector and

B -[?]
are coefficient matrices, where, in Eq. (12a),

A =

0

0

Bi(t) - Bi>
0

(11)

(12a)

(12b)

(13a)

(13b)

in which A0 represents the coefficient matrix of the postma-
neuver state. We note that AQ and A\(t) were defined so that
A\(t) reduces to a null matrix at the terminal time t f . This
simplifies the boundary conditions of the perturbed solution.

Next, we consider the performance index

1
-
2Jo

so that the optimal control law is given by

F = -R~lBTPw

(14)

(15)

where P is the solution of matrix differential Riccati equation6

(MDRE)

P(T) = 0

(16a)

(16b)

Consistent with the perturbation approach, we express P as
a sum of matrices of different order of magnitude

P = P0 + PI + (17)

where the subscript denotes the order of magnitude, in the
sense that the higher the value of the subscript the smaller the
magnitude order. Inserting Eq. (17) into Eqs. (16), we obtain
the zero-order MDRE

-P0 = Q- P<>BR ~ (18a)

(18b)

and the higher-order matrix differential Lyapunov equations
(MDLEs)

(19a)

(19b)7 = 1 , 2 , . . .

where

denotes a closed-loop coefficient matrix and

(20a)

(20b)
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If the final time T approaches infinity and the maneuver
ends at time //, tf< T, then during the postmaneuver period
we can use the steady-state solution of the zero-order MDRE
because the time-varying coefficients no longer exist after the
termination of the maneuver. But, for r-»oo, the zero-order
MDRE, Eq. (18a), can be replaced by a matrix algebraic
Riccati equation (MARE). Hence, to obtain the zero-order
solution, we need only solve

(21)

The MDLEs, Eqs. (19), hold only during the maneuver, so
that the boundary conditions (19b) must be replaced by
Pj(tf) = 0, where //indicates the final time of the maneuver. In
view of this, the solution of Eqs. (19) can be expressed as

Pj(t) = - 01

, 7 = 1 ,2 , . . . (22)

as shown in Appendix A. The control law is obtained by
adding the solution of the MARE, Eq. (21), to Eq. (22) and
inserting the result into Eq. (15).

To evaluate the integral in Eq. (22), it is advisable to resort
to discretization in time. Letting Atk - tk + i - tk, it is shown in
Appendix B that Eqs. (22) can be replaced by the backward
difference equations

Pj(tk) =

(23)£=0 , 1 , 2 , . . . , j = 1,2, . . .

It is reasonable to assume that the integrand varies linearly
over the small time interval tk < t < tk+ i, so that Eqs. (23) can
be approximated as follows:

Pj(tk) = V2*j

= 0, 1, 2, = 1,2 , , (24)

Equations (24) represent recurrence formulas permitting the
computation of P, backward in time. This task must be carried
out prior to the start of the maneuver.

The control law given by Eq. (15) is in the form of a
differential equation, so that it does not lend itself to ready
implementation. Our object is to use this equation to generate
an implementable control law. To this end, we partition the
Riccati matrix P(t) as follows:

PII Pi2 PIS
Pll P22 P23

Pll P32 P33

(25)

Then, recalling Eq. (12b) and the nature of the extended state
vector w, Eq. (15) can be rewritten as

F=-R-lP3lr,-R- lP32i, - R ~ lP33g (26)

Introducing Eq. (9) into Eq. (5), we have simply

g = (/ + WM + G^ + (Ao + ~Kl)r, (27)

so that, inserting Eq. (27) into Eq. (26) and considering a
perturbation expansion, we obtain

F= - \G?
L

where

], 7 = 1 ,2 , . . .

= 1 , 2 , . . .

(28)

(29a)

(29b)

(29c)

(29d)

(29e)

(29f)

in which superscripts 0 and j denote time-invariant and small
time-varying quantities, respectively. The closed-loop equa-
tions are obtained by combining Eqs. (5) and (28).

The response of the closed-loop system can be derived con-
veniently by casting the closed-loop equations in state form.
To this end, we introduce the new state vector £ = [iyr ijTFT]T

and rewrite Eqs. (5) and (28) in the state form

where

A\t) =

(30)

(31a)

B'(t) = (31b)

in which F(0) was chosen as zero arbitrarily. Moreover, we
assumed that the maneuver starts from rest, so that iy(0) and
iy(0) are zero as well. Integration of Eq. (30) can be carried out
in discrete time.

Stability Analysis
For future reference, we would like to examine the stability

characteristics of the closed-loop system. To this end, we
introduce Eq. (15) into Eq. (11) and obtain the closed-loop
equation

where

AC=A -BR~1BTP

(32)

(33)

is the closed-loop coefficient matrix. To investigate the stabil-
ity of the system described by Eq. (32), we consider Lya-
punov's second method. The second stability theorem of Lya-
punov is concerned with the asymptotic stability of a system in
the neighborhood of the origin and it reads as follows: If there
exists for the system (32) a positive definite function K(>v)
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whose total time derivative V(w) is negative definite along
every trajectory of Eq. (32), then the trivial solution is asymp-
totically stable.

The matrix P(t) that satisfies Eq. (16a) is positive definite,
so that

V = w TPw > 0 for all w * 0 and for all t (34)

Hence, the scalar function V defined by Eq. (34) can be
regarded as a candidate for a Lyapunov function. Next, con-
sider Eq. (32) and write

V•= wT(P + PAC

where
PA

or, using Eq. (16a),

//= -Q -PBR~1BTP

(35)

(36)

(37)

The stability of the system depends on the negative definite-
ness of H. If the eigenvalues of H are all negative, the system
is guaranteed to be stable. From Eq. (37), the negative defi-
niteness of H can be easily verified, so that stability is guaran-
teed. In the case of the perturbation approach, Eq. (37) be-
comes

H = -Q - (Po + PI + P2 + )BR~ 1BT(P0

(38)

so that once again stability is guaranteed.

Adiabatic Approximation
Another approach to control design for time-varying sys-

tems, referred to as "adiabatic approximation," is suggested
in Ref. 5. If the rate of variation of the parameters is slow
relative to the closed-loop dynamic response, then one can
design the control gains under the assumption that the system
is time invariant and schedule the gains as functions of time.
The gains are determined in Ref. 5 by solving a matrix alge-
braic Riccati equation at various instants of time. This raises
questions of stability, which are answered in Ref. 5 by giving
sufficient conditions for asymptotic stability. If we use the
concept of adiabatic approximation to the perturbed Riccati
equation, the adiabatic solution for the time-varying part can
be obtained by solving the MDLE, Eq. (19a), by letting P, = 0
for each instant of time. The resulting matrix algebraic Lya-
punov equations are

Pj(t)Aoc = 0, = 1,2, . (39)

The advantage of this solution is that the time-varying gain
matrix can be calculated at each instant of time without solv-
ing the differential equation. The gains can be calculated prior
to any maneuver, thus saving real-time computations. How-
ever, stability must be checked a priori.

To check the stability characteristics of the control designed
by the adiabatic approximations, we use the same approach as
for the perturbation approach. Hence, following the same
procedure as for the perturbation approach, it can be verified
that in the case of the adiabatic approximation we obtain

1 pert (40)

The negative definiteness of //adia depends on the contribution
of Pj to //adia- Although P/ may be small, the time-derivative P/
can be large if the time-varying terms change abruptly. This
can happen during bang-bang maneuvering, for which there is
a rapid change from acceleration to deceleration at half the
maneuver period.

Numerical Example
As a numerical example, we consider the planar model

shown in Fig. 2. In the two-dimensional case, the configura-
tion vector in Eq. (1) can be written as AC = [Ry Rz 6 qJ]T where
Ry and Rz represent the translations in the y and z directions,
6 represents the angular motion of the main rigid body, and qe
is a vector of generalized coordinates associated with the elas-
tic motion of the appendage. The coefficient matrices entering
into Eq. (1) are as follows:

(41a)

(41b)

(42a)

(42b)

(42c)

~mt

0
0
0

1

0
mt
s<

e e

0 =

"0
0
0
0

0 0
St $e

it $, + roe*e
+ A*(te$J Me

0 0 0 "
0 0 0
0 0 0
0 0 Ke_

are the constant part of the coefficient matrices and

,= - 2/3(5 pGs

are the time-varying parts, where /3 represents the angle be-
tween the flexible body and the rigid body, in which s/3 and c/3
denote sin/3 and cos/3, respectively. Moreover,

0 0 Se $e

0 0 0 0

Se 0 0 0
i>[ o o o

0 0 0
0 0 Se 4
0 Se 2Ser0e

0 0 Se 3>,
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 Se 3>e

0 0 0 r0e4
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Me

(43a)

(43b)

(43c)

(43d)

(43e)

0 0
0 Se

0 r0eSe

0 0

0

0

(430

0 0 Se $e

0 0 0 0
0 0 0 0
0 0 0 0

(43g)
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Finally, /(/) and d(t) represent resultant control forces and
disturbances, respectively, and they are given by

• f = [ F y Fz Mx Qe
T]TIT

and

(44a)

(44b)

The various terms entering into Eqs. (41), (43), and (44b) are
defined as

mt = mr + me

St = Se

2r0eSe

Se = pere dDe
}De

Ir = | Pr(r2
y + r2) dDr

Ie = Per2 dDe
)De

e = Pe$e dDe
}De

>e dDe
De

Me = p€*l*e dDe

(45a)

(45b)

(45c)

(45d)

(45e)

(45f)

(45g)

(45h)

(45i)

(45j)

in which pr and pe represent the mass density for the rigid body
and flexible body; r0e is the radius vector from 0 to e, where
the point 0 is taken to be the center of mass of the rigid body;
re is the position vector of a nominal point in the undeformed
appendage relative to xeyeze\ mr and me represent the mass of
the rigid and flexible bodies; Se represents the first mass mo-
ment of inertia of the flexible body about point e ; Ir and Ie are
the mass moments of inertia of the rigid body and flexible
body; and [ , ] represents an energy inner product.7 The vibra-
tion was represented by five admissible functions, i.e.,
$e = [0i» 02» • • • » 0s] > where each admissible function has the
expression

C/(shryy:y1 - si

j = 1 , 2 , . . . , 5 (46)

which are recognized as cantilever shape functions.7 The coef-
ficients in Eqs. (46) have the values C, = 0.7341, 1.0185,
0.9992, 1, 1, and the arguments of the trigonometric and
hyperbolic functions can be obtained from yjle = 1.8751,
4.6941, 7.8548, 10.9955, 14.1372, where le is the length of the
beam.

The maneuver of the appendage relative to the platform was
carried out by means of a bang-bang control law for the
angular acceleration. Hence, we have

J3 = c, /5 = ct, /3= V2Ct2 for t < tf/2 (41 a)

'$= -c, 0= -C(t-tf), 0= - V2c(t-tf)2 + Vtct2-

for tf/2 < t < tf (47b)

where c = 4/3f/t2, in which /3/and //represent the final maneu-
ver angle and time.
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Fig. 3 Time history of ^32(1,1).
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Fig. 4 Time history of />32(2,2).
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Fig. 5 Time history of />32(3,3).
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The numerical data used are as follows:
mr = 10 kg, me - 1 kg

Se = 2.5 k g - m
Ir = 20.0 kg - m2, Ie = 8.33 kg - m2

r^ = 2 m, 4 = 5 m, EIe = 600 N - m2

$e = /ne [0.783 0.434 0.254 0.182 0.141] kg

$e = mele[0.569 0.091 0.032 0.017 0.010] kg - m

Me = m^j, Ke = ̂ (7/4)2(7A)2<5,y + Keg
*e

(3f = 45 deg, tf = 3 s

where Keg represents the geometric stiffening effects. These
effects can be attributed to inertial forces acting over a short-
ening of the projection due to bending displacements8 and can
be significant for rapid maneuvers. In the present example,
they are negligibly small.

Figures 3-6 show some of the entries of the Riccati matrix
obtained by direct numerical integration, adiabatic approxi-
mation, first-order perturbation method, and second-order
perturbation method. Because the direct integration of the
matrix differential Riccati equation corresponding to a model
including five elastic degrees of freedom was not possible due
to numerical difficulties, comparison of Riccati solutions was
made based on a model including only one elastic degree of
freedom. As can be concluded from the figures, the solutions
obtained by the adiabatic approximation differ to some extent
from the solutions obtained by direct numerical integration,
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0.800

Fig. 6 Time history of 7*32(4,4).
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Fig. 7 Translation of the rigid platform in the y direction.

and the same can be said about the first-order perturbation
solutions. On the other hand, the second-order perturbation
solutions are very close to the solutions obtained by direct
numerical integration. Note that the entries represent the diag-
onal elements of P32; the off-diagonal elements of P32 are
several orders of magnitude smaller. Note also that the scale
of the plots may be misleading and in fact the solutions are
closer together than they seem.

Figures 7-10 show the uncontrolled and controlled rigid-
body and elastic displacements obtained by the second-order
perturbation method for a model including five elastic degrees

of freedom. The coefficient matrices in the performance mea-
sure were as follows:

R = 0.01/g
0

Note that computation of the control gains by direct integra-
tion ran into numerical difficulties, so that no comparison was
possible. Finally, Fig. 11 shows the time history of the control
forces and control torque for the rigid-body displacements,
and Fig. 12 shows the time-history of the generalized controls
associated with the elastic degrees of freedom.
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Fig. 11 Control forces and torque for the rigid-body motions.
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Fig. 12 Generalized control forces for the elastic degrees of freedom.

Summary and Conclusions

The equations governing the motion of a flexible spacecraft
with time-varying configuration, such as in the case of maneu-
vering flexible appendages, are characterized by time-varying
coefficients and persistent disturbances. A perturbation tech-
nique is developed here for the design of optimal controls for
the case in which the time-varying part of the coefficient is
small compared with the constant part. According to this
perturbation technique, the determination of the control gains

is divided into two parts, a time-invariant part obtained by
solving a matrix algebraic Riccati equation and a time-varying
part obtained by solving matrix differential Lyapunov equa-
tions. The resulting closed-loop equations represent a set of
equations with small time-varying coefficients, which can be
treated by extending the state to include the control vector.
Integration of the resulting state equations can be carried out
in discrete time. A numerical example in which a flexible
appendage is reoriented relative to a platform stabilized in an
inertial space demonstrates the effectiveness of the method.
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Appendix A: Solution of the Matrix Differential
Lyapunov Equations

Introducing the change of variables t = t/ - T, Eq. (19a)
becomes

Pj = j + *j(tf - r) (Al)

where prime denotes d/dr. Moreover, boundary condition
(19b) becomes P,(0) = 0. Multiplying Eq. (Al) on the left by
SI(T) and on the right by S2(r), we obtain

S1AJCPJS2 +

Next, we consider

(A2)

(A3)

Eq. (A4) reduces to

-(SiP,S2) =

Integrating Eq. (A6), we obtain

—(SiP/Sz) = S{PjS2 + S{P{S2 +dr

so that Eq. (A2) can be rewritten as

_d_ _ .
dr

= Si*j(tf - r)S2 (A4)

Assuming that Si and S2 satisfy

S f+Si/Coc = 0 (A5a)

52+ AocSz = ^ (A5b)

(A6)

i dr (A7)

:2~l(a) (A8)

(A9a)

(A9b)

so that, inserting Eqs. (A9) into Eq. (A8) we obtain

f a
Pj(a) = exp[A£c(a - T)\*j(tf - T) exp^locfa- r)] dr (A10)

Jo

Introducing the changes of variables 7 = //— r and a = tf—t,
we can rewrite Eq. (A 10) as

01 dr (All)

Equation (A7) yields

Equations (A5) have the solution

SI(T) = exp( - 4£

S2(r) = exp( - X

Appendix B: Discrete-Time Solution of the Matrix
Differential Lyapunov Equations

The object is to discretize Eq. (22) in time. To this end, we
ett = tk+i in Eq. (22) and write

(Bl)

in Eq. (22) and considering

m — tk)] dr

— tk)] dr

r~^)l dr

dr

Then, letting t = tk - tk+ \
Eq. (Bl), we obtain

Pj(tk) =

Finally, replacing y by r, we obtain Eq. (22).

(B2)

where we introduced the change of variables r = tk -f ^ in the
integral.
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